Find All Solutions to the Equation Cos X
Trigonometry | ||||||||||||||
| ||||||||||||||
Trigonometric Equations | ||||||||||||||
Basic Trigonometric Equations | ||||||||||||||
The equation cos x = a | ||||||||||||||
Trigonometric equations | ||||||||||||||
An equation that involves one or more trigonometric functions, of an unknown arc, angle or number, is called trigonometric equation. | ||||||||||||||
Basic trigonometric equations | ||||||||||||||
The equation cos x = a , -1 < a < 1 | ||||||||||||||
The solutions of the equation are arcs x whose function's value of cosine equals a . | ||||||||||||||
| ||||||||||||||
Therefore, if cos x = a, - 1 < a < 1 then, x = + a rad + k � 2 p = + arccos a , k � Z. | ||||||||||||||
For example if, a = - 1 , then, cos x = - 1 => x = p + k � 2 p , k � Z , | ||||||||||||||
a = 0 cos x = 0 => x = p /2 + k � p , k � Z , | ||||||||||||||
or a = 1 cos x = 1 => x = k � 2 p , k � Z. | ||||||||||||||
Since cosine function passes through all values from range - 1 to 1 while arc x increases from 0 to p , one of the arcs from this interval must satisfy the equation cos x = a . | ||||||||||||||
This arc, denoted x 0 , we call the basic solution . | ||||||||||||||
Thus, the basic solution of the equation cos x = a, - 1 < a < 1 is the value of inverse cosine function, x 0 = arccos a or x 0 = cos - 1 a , that is, an arc or angle (whose cosine equals a ) between 0 and p which is called the principal value . | ||||||||||||||
Scientific calculators are equipped with the arccos (or cos - 1 ) function which, for a given argument between - 1 and 1 , outputs arc (in radians) or angle (in degrees) from the range x 0 � [0, p ] . | ||||||||||||||
Example: Solve the equation, cos x = - 0.5. | ||||||||||||||
Solution: In the unit circle in the below figure shown are the two arcs, of which cosine value equals - 0.5 , that represent the basic solutions of the given equation | ||||||||||||||
x 0 = 120 � or x 0 ′ = - 120 � | ||||||||||||||
while the abscissas of the intersection points of the line y = - 0.5 with the graph of cosine function represent the set of the general solution | ||||||||||||||
x = + 120 � + k � 360 � or x = + 2 p /3 + k � 2 p , k � Z. | ||||||||||||||
The same results we obtain by using calculator if we set DEG then input | ||||||||||||||
- 0.5 INV cos (or cos - 1 ) =>x 0 = 120 � and x 0 ′ = - 120 � that are the basic solutions. | ||||||||||||||
Or we input the same while calculator is set in RAD mode to get the arc in radians that is | ||||||||||||||
x 0 = 2.094395102 rad = 2 p /3 rad . | ||||||||||||||
Trigonometry contents B | ||||||||||||||
Copyright � 2004 - 2020, Nabla Ltd. All rights reserved. |
Find All Solutions to the Equation Cos X
Source: http://www.nabla.hr/TF-TrigFunEqu6.htm